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Abstract

0
Analysis of covariance is often conceptualized as an analysis

of variance of the residual scores that are obtained when the

dependent variable is regressed on the covariate. Although this

cohceptualization is intuitively appealing, it is mathematically

incorrect. If residuals are obtained from the-pooled within-

groups regression coefficient (14), an analysis of variance on the

residuals results in ap inflated a-level. If the regreSsion

coefficient_for the totP-1=sample-combined into-One-group (byr-i-§

used, ANOVA on the residuals yields an inappropriately conserva-

tive test..' In either case, analysis of variance of residuals fails

to provide a correct test; becauSe the significance test in analy-

sis of covariance requires consideration of both bw and bT,unlike

an oIresiduais. It is recommended that the significance

'test of treatment,effects in analysis of covariance be conceptual-

ized as a comparison of models whose parameters are estimated by

the principle of least squares.



Analysis :of covariance (ANCOVA) tends to be one of the mast mis-

understood and misused statistical techniques, partly because is

-requires a.synthesis of multiple regression/correlation (MRC) snd

analysis of variance (ANOVA) concepts. One commonly employed method

of explaining how ANCOVA relates to MRC and ANOVA is to make use of

the concept. -of a residual Score. ANCOVA is presented as an ANOVA on

the residual scores that are obtained when the dependent variable is

regressed on the covariate. For example, Marascuilo states that "Co-
. .

variance_s.d_j_ustment---i-s-equivalen-t-to projecting the earned score [the

dependent variable in his example.] in a direction parallel to the

regression line to the .IQ score [the-covarlate in hif., example] defined

at Y [where R is the grand mean 'Lr the covariate]. This parallel'

pro3ection is performed for all paifS of observations and an analysis

of variance is then performed on the adjusted scores" (1971; p. 499).

This sort of explanation of ANCOVA can be found in many, if not

most, of the standard sourcebooks on 'statistics used by social scien- :

tists. To cite'only a few, Snedecor and Cochran state that "The

analysis of covariance is essentially an analysis. of variance of the

quantity--(Y-bX)" (1967, p. 424), Cohen and Cdhen say that "The ACV.

[ANCOVA] involves the analysis of (the residuals of) Y when one or

more other variables (the covriates) have been partialled out. . .

. _,
In ACV, the residual that is analyzed is.Y - YA for each subject .

in exactly the same way as Y itself is analyzed in AV [ANOVA] "

(1975;-p..-308)--:--Acto-r-ding-to the SPSS manual, "Regression proded--

ures are,used to reMove. Variation in the dependent variable due to
- _ . .

.

-one -or more covariates; and a conventional. analysis of variante:is

then performed on the 'corrected' Scores" Nie, Hull, Jenkins, Stein-

brennpr, and Bent, 1975; p. 409). Similar statements can also be



found in such sources as Dixon and Massey (1969, p. 223), Kerlinger

ana Pedhazur (19.73, pp. 266-267), and Lindquist (1953, p. 3a8).

Eoplever, it is well-known by these authors and others that ANCOVA.

anA an analysis of variance conducted on the residuals (hereafter.

caled .A ORES) will be slightly different. because one degree of

freedom is used to estimate the slope of the regression line of the

dependent variable on the covariate. Thus, without this adjustment

in degrees of, freedom, the error term for ANORES wouldhalte_one
_

additional but artificial degree of freedom. With this adjustment,

it seems that ANCOVA and ANORES should be identical._ In fact, how-
,

ever, they are not identical even after the degree of freedom.adjust-_

ment. The commonly held belief that they are the same is a refIec-

tion of the lack of understanding of the ANCOVA model.

The current paper will employ the approach of comparing models

using least squares ksee, for example, Cramer, 1972)-to explain
-

ANCOVA and ANORES are indeed different. Viewing ANCOVA as a com-

parison of models considerably illuminates the logic behind ANCOVA.

A numerical example'illustrating. the general principles will also

be presented.

The analysis of covariance_test of group differences can be

conceptualized as the comparison of the following two models:

I. Yij = p aj aXij (1)

II. Yij = p aXij cij (2)

where Yij is the score on the.dependent variable of the ith subject

in the.jth-:group,pis,a grand mean parameter; aj is a 2arameter

indicating the effect of the jth treatment,a is a regression-coeffi-

cient, Xij is the score on covariate for the ith subject in the
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_ _
-jth group, and eij is an error term for the ith subyect in the

jth group. The models are compared by using least squares-to esti-
,

mite each parameter in each model and .ihen comparing the error sum

of squares (SSE) for the'two modelS.- With the usual ANCOVA assume-

tions (see, for example, Glass, Peckham, and Sanders, 1972, or

Elashoff, 1969), the following expression has a central F distribu-

tion with k-1 and N-k-1 degrees of freedom if the null hypothesis

of no treatment-effectS-is-trte-Tk is the number of treatment groups,

and N isthe total. sample size):

F = (SSE (II) SSE CI)) /.k -l) .

SSE (I)/(N=k--=1

The model comparisons approach makes clear that the F test

ANCOVA is a lunction of the extent to which scores on the dependent

- variable can be more accurately. predicted if groUp: membership is

known than.if it is not, where 'prediction is. performed it.both

Models by using least squares. Of crucial itportance later in our

argument is the estimation of B in models I and II. A common miS=

conception is that since both models contain a a parameter, the

least squares estimate-of s in model Iwill be identical to the

least squares estimate of a in model II. However in model I the

estimator is bw,.the pooled within-groups regression coefficient for

YregressedonXwhileinmodelIItheestimatorisbT,the)

regressioncoefficientforYonXfortheentiresampleof obser-,

vatioris'combined into one group. In the absence-of group member-

ship parameters, optimal prediction is obtained -by, using bT as the

slope coefficient; whereas when different 'intercepts for each group-

are allowed for by the introduction of group membership parameters



but a common slope of Y on X is assumed; optimal prediction is

obtained by using bw. It should be noted that rarely will bw = bT,

piincipally because of sampling variability.- Note also that even

the corresponding B parameters being estimated (i.e., 0 in Equations

1 and 2, respectively) are themselves unequal unless themulI

hypothesis is true or assignment to groups is random. This can be

seen by thinking_of_the_ANCOVAmodels as regression models and
6

realizing- that the value of a parameter remains urichanged when

\another parameter is added to the model if and only-if the second

parameter equals zero or the variables associated with the parameters

are uncorrelated. If the null hypothesis is true, the a
3
parameters .

iin model I will be zero and hence the 0 parameters n models I and

rI-will be equal. If assignment to groups'is random, the X variable

will be uncoirelated-in the populatiOn with the ai group-membership.

-variables and hence the population regression coefficient associated

with X will be the same in both models. Of course; even if one or

both of theie conditiohs are met with the result that the 0's are
t

equal, the vallies.of bw and bT will almost certainly differ because

of sampling error

Certain authors (e.g., Winer, 1971, '151-). 763-764; see also Evans

and Anastasio, 1968) have mistakenly stated that the equivalence of

the two parameters is an assumption-ofthe analysis of covariance.

However, ANCOVA does not in general require equivalence, although

interpretation of results is clearest when-groups are randomly con-

stituted and hence the two 0 parameter values are equal.'

This distinction between bw and bT, as well as the introduction

of bE, the between-groups _regression of Y on. j , often is difficult

7



t6 explain when relying on extensions of the:ANOVA approach; and'

hence contributes to the confusion surrounding ANCOVA. In contrast,

the, model comparisons "approach making the utilization of least

squares explicit shows why it is necessary-to define both bw and bT_

in order to discuss ANCOVA. However, bB is not a least-squares

estimator of a parameter in any model, and seems to be of limited

value, except when multilevels of unit of analysis are considered..,

For example, analyses might be'conducted both at the level of stu-

dents,and clasSrooms, in which case b- may be-of interest. For

further discussion, see Burstein, Linn, and. Capell (1978).

ANORES can also .be conceptualized in terms of model compari-

v
_ . .

sons. One virtue of tins approach is that it necessitates explicit

consideration of how the residuals are to be obtained, beltause

dither bw or b.4. could be used to define a residual score. Cohen and

Cohen (1975, p. 308) have argUed that bw shouldbe used. However,

"because none of the other previously referenced sources have stated

beginning

with b
11

Te residual score for the ith subject in the jth group

can then4e_written-as Y.-
ij Xij. And, the models compared by

which coefficient should be used, we will examine both,

ANORES 'may then be written:

III. Y-
1j

-13 X.
j

= p + a- - (4)W l )

IV. Yij - bwXij = p.+ tij (5)

..The Significance-test is again obtainedby comparing the error sum

of squares for the two models as follows:

F SSE (IV) SSF

SSEJIII)/(N-k-1)::
(6)

The term N -k -I appears as the denominator degrees of freedOt betausel

8 hasbien estimated to obtaiti the teidiial Stores.

8.



The relevant quistion, at this point is hoia thiS F test relates

to t at in Equation 3 from ANCOVA, which translates to. how the errors

associated with the models compare. First, donsider tfie relationship
. ,

b:etween models I and III. It can be shown that SSE(I), equals' SSw

./for ANCOVA; -i.e. , the adjuste within-group sum of-squares, which
28'in turn equals (see Kirk, 19 , p.

E.

SSW I(Yij 7.j)
2 2

-)

, -

The error sum of squares for model II-I is given by SSw the

(7)

bdependent
variable'Yij WX. Since

SSE (I I I) ZE (Yii - bwXii (Y.

and

bw -=
Ez(x- -) (Y=.ij ;3 4.3

ZEpCij X.i) 2

(8)

(9)

algebraic manipulation Ieadi to

SSE(III) ZZ(Yij Yli)2 - b2 EZ( _ 5 j)2 (1

SSE (1)

Consider next the relationship between model II and model IV. In

model II, estimates for p and 0 are arrived at so as to minimize

the error sum of squares for such a two iarameter'modell In model

IV, however, bw is fixed, so that only u is estimated through least

squares. This estimate is given by

= (Ii)

--Itmust be the case that,SSE(IV) SSE(II), because least squares

for model II could always "choose" 11 to be as. in (11) and R =

duplicating the estimates of model IV; otherwise, the estimatesofl__
-

9



model II will differ and provide a bett'ir fit to the deta, yieading_

'a smaller errorsuk of squares, since this is precisely the goal of
.

the least squares procedureReference to the formulas for the F

test_ in___401-C-OVA- (Equation 3) and ANORES (Equation 6) reveals that the

observe3' F -ratio for ANORES must be at least as large as the -F for

ANCOVA, since SSE(I) = SSE(III) but SSE(IV) SSE(II). The extent

of the discrepancy will depend on the extent -to which b1 differs

from 6T, since it can be shown that

SSE(IV) = SSE(II) + 2
; (12)

This relationship shows that the test given in Equation 6 is

not a legitimate R test, because the sampling distribution of the

statistic differs systematically frpm the sampling distribution of

the proper test-'statistic. The reason that Equation 6 is inappro=

priate is that the numerator expression.

_ . _ _
.chi-square- random=varra e with k.-1 degrees of freedom. This is

obvious since SSE(IV) - SSE(III) is systematically larger than

SSE (I1) SSE(I), which (when .divided by a2) is "-distributedasa

chi - square with 1c=1 degrees of .freedom._

iobtain_residual- scores will lead to" an

__Bence ,- ANORES using bw,

inflated-a-level, and is

..certainly not equivalsit tip ANCOVA.

Although the use of bw to obtain residuals does not reproduce ."
ANCOVA,-it is also possible to perform ANORES using bT, to obtain

residuals.- Perhaps it is this form of-ANORES that previous authors

have had in mind when they have written of the equivalence between -.
.Ale

ANCOVA and ANORES. It should be noted that- this appLo_ach--1saften

referred to as.a residual gain analys-i (e.g.; Corder-Bolz, 1978).

v,
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With this method of forming ieSteual scOres, the dependent variable

for the ith subject in the jth group is Yij bTXij. Models to-be

Compared are then:

V. Yij.- bTXij u a-
3

eij

VI.
3

bTXij efi

Once again, wermight perform a signifiCance test by comparing the
,

error sum of squares for the...two models as
P

(SSE(VI) -`SSE (V))/(k-1)

SSE(V)/(N=jc=:1)

(15)
.

As before, NA-1 appea_u_in-t0--denominator because'a hAs been

estimated-to-Obtain the resddu ^Now, models I, II, V, and

.VI must he pare Models II and VI are identical because bo*h

include bT as- the slope value and u = bTX.. in both cases.

Hence,

SSE(VI) = SSE(II). (16)

_!Consider next thef relationship between models I and V. In model I,

estimates_for p, a-
'
and a are chosen so as to minimize the sum of3-

squared errors, by the definition of least squares. In modeI V,

least squares estimates-are obtained for U and a: subject to the

constzaint.that8 = bT. -However, bw is the least squares estimate

and therefore must lead to a minimal sum_of-squared errors. Hene,
.

f(17)

the extent of the difference in error sum of sciilares is -related
/

to the difference between 15w and bT.. In particular,

SSE(V) = SSE(I) + (bw _`bT)2 ZE(Xii--X (18)
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Referring to Equations 3... and 14 shows that the 'Foralue" obtainer

by using this approiCh to ANORES must result in ,a value that is
J

less than or--equal to the F obtained with ANCOVA, with equality

holding only if bw = bT. Thus, this form of .ADORES also fails pc

,Ape equivalent to ANCOVA and fails to provide a valid F test, for
.1

much the same reason as did ANORES with bw. With the bT approach

however- neither the numerator nor the.denpminator have the. chi

square. distributions neeessary to make their ratio an F random

variable.

Thus, claims that ANORES and ANCOVA are equivalent are false

whichever approach to ANORES is employed. The fact that modelS I
_

and III are equivalent and thatII and VI are also equivalent

suggests that it is possible to duplicate the ANCOVA test by exam

ining residual scores. Specificafly, the following-test is equi1

lent to the ANCOVA test:

(SSE(VI1 = SSE(ITL))/(k-I)

SSE(III)/(N=k=1)

The crucial fact is that ANCOVA depends upon both bW T
and bT, and

consequently. so must an equivalent analysis of. residuals. It it- ..
insufficient.to attend to -only one regression coefficient. As

stated previously, es beliOe that this is one of .the least under

stood points concerning ANCOVA. Only by close inspection of mode:

and the:least squares-principle does the logic underlying the reg:

sion Coefficient-parameter become elear.

A numerical example Will demonstrate the theoretical argument'
concerning the relationship between7ANCOVA and ANORES. ,Consider 1

hypothetical data liven -in Table 1. The error sum_ofsquares- fox

t2
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tive six models previously outlined are presented in Table 2 or

. tfi6se data, and Table 3 presents analysis-of variance tdbIeS for

ANCOVA-and---the- two forms of ANORES :& 1Results .here verify th4t the

Insert Tables 1, 2i 3,. and:4 about here

"F" obtained with AZORES using"bw to form residuals is too large,

while the "F" when bT is used is too small. ThiS example illus-

trates that even when the two groups being compared have similar'
. ,

distributionsonthe covariate, the use of-bw alone\can lead to an3

incol'rect conclusion _off` statiit-i-cal-significance at-the-'-.-0-5--ievel._ _
,

-With different data, the use of ST alone might result in a failure
...

to recognize an appropriately Si/nificant result. For example, by

imply revising the data from thj first example by subtracting 4

from each X score in group 2, the results of the analysis would be
_ _

-as shown in Table 4. Note that here while the appropriateWOVA

_yieIdsa_resuIf-that is significant at E <.05, results of the ANORES

with-by are significant at R <.025, but th-ANORES--=w-i-th T is non-

significaht, E >.10. F for ANORES-bT is less than

half that-for ANORES ibi.;'

Ih'iddition, it is' possible to-duplicate the ANCOVA- results by

employing both bT and bw-to form residual scores and then applying.

.Equation 19.- The reason this_proedure works can be seen in Tables

-ANORES with -bw yields the adjusted.SSw, and_ANORES_

yields -the correctadjuStedSST:: Thus;-EqUation I9JroVides
. .

a ihe'AdjOied gep 8quare: ttetween divided by tbe.Adjuted °

:1
Mean Squar-6-Within, as is desired.

Several authors of exixerimental-design texts-state.t at the

13
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adjusted between-group sum of squares in ANCOVA is obtained by sub-
,

--:stracting the SSw -fOr residuals using-bw_from the SST for residuals

-using bT, instead of by direct calculation; However, the actual

reason for the necessity of this approach has not been clearly eluci-

dated by behavioral. statisticians. For example, Lindquist states-

that "A different adjusted slam _of squares for between-groups could

be directly compw5ed as (.4rbwi2, using the Within-groups regres-

sion coefficient. *However, an 'adjusted sum of squares.for between=

groups thus computed would_be inflated by sampling error in the

estimate (bw) of the regression coefficient employed ___and vau_l_d_make

the between-groups effect appear more significant than =it really is"
.

(1953, p. 323). Although Lindquist's conclusiofi isicorrect-, the.''crux
.,/

of the matter is not simply the nature of the bw estimate, but instead

.

the use of-bw alone instead of bw and bT together as detailed above.

In a somewhat similar vein, it has been stated (see, for example,

Kirk, 1968) .that bw should not be used to adjust botiitte_aume_ratiar
and the-denominator of-the F ratio because this would violate the

independence condition. necessary for an F ratio. While the numerator

and.,denominator must indeed be independent, the current argument

shows' that this use of bw to obtain an adjusted sum of squares between

groups also fails even to provide a numerator quantity that

tributed as_a chi-square).

In addition to explaining why the use of-bvi-alone results in

an inflated and inappropriately distributed between-group sum of

squares, the current approach also makes clear the different roles

of bw and bT:: ThiS diStinetionbetweenl?w and bT has been widely
.400-

misinterpreted (see, for example, Cohen'& Cohen; 1975): In eon--

trast to Lindquist and Kirk, Cohen and Cohen err by recommending
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use of b' alone, saying that to use would result in "removing

from Y, in part, exactly what we mean, to study" 01975, p. 308).

Although use of bT does result in a lower adjusted SSB than if b1

alone were used, use of bT in the restricted model should not be

viewed as removing part of- "what we mean to study." Rather, it

gives the restricted model .a fair chance in that it allows the

estimate of the regression parameter to be an optimal, least squares

estimate, as bw is in the full model.

In sum, although the concept of a residual score can be a' useful

pedagogical-tool-for explaining the logic of ANOVA, it has typically.

not been utilized accurately. A correct SSB can be calculated by

using residuals, but only by considering both bT and bw, and hence.

at least implicitly considering two sets of residuals. In terms of

the residual scare models,

Adjusted SSB = SSE(VI) = SSE(III)., (20)

However, this eliminates much_of Vhe simplicity of the 9etidual

stores approath, Since it requires a synthesis- of ANORES using bT

and ANORES using b Instead of relying on ANORES to explain ANCOVA,

an approach utilizing todeI copparisons and least squares clarifies
s

the ANCOVA procedure and its underlying rationale.
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Table 1

Hypothetical Data to Illustrate

ANCOVA - ANORES Relationship

Group 1 Group 2

X Y_ X Y

100 100 100 .-105

95 98 -90 '109

105 102 95 104

110 106 105 112

105 : 101

90 .103._____

15
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Table

ANCOVA and.ANORES_Model=antlAssuoiated

Error Sums of Squares

Model

= p. + cc=.13X
. 3:

+
1i

Y,3 = BX--

VI.

16

SSE

110;30

170.7

110-T3

175.7

114.9

.170;7'

v.-



ANCOVA

ANORES .

with bwa

Tabli

Analysis of Variance Tab leg-

. -4-

Source

Between- .60.4

Within 110-3

.60A 4;9

12.3

Between_ ____ 165.-3------f- 65:-3---

12.3

--5-1*,

. - .-Within

Total'

J-10 3' - 9b

__11-5;-7-- 10.

ANORES BetWeen : SSA

Within 77:.:--=114;9:±

17

12.-8-

0.20 for these data

- 9 because of the estimation of
$ in forming the residual.

=EL 09 for- these data

1



ANCOVA

Table 4

Analysis of Variance Tables
_for Revised Example'

Source SS df

Between 64.3

W±thin

Total 174.7

____:....-_------,=-.-ANORES BetW-eenl----- 8-9-7-7

_ -- ----- _a-----1;iith big- . Within 110.3
Total

with
-1)T

Within

Total

1

18

MS

64.3 5.2**

12.3

200.0 10

46;1

1_28-.5

174.7 10

89.7

12.3

7.3***

1 = 46.1 -3.2*
b.9 14.3

= 0.20 for thfese data

= 9 because of the estimation of
8 in forming: the residual

-0.01 for these data

***" 2. .02$

** <As-

.10


